SYNTHESIS OF TRIDEUTEROMETHYL-3(5) PYRAZOLES

Gloria Y. Iranzo and José Elguero*
Instituto de Química Médica, CSIC, Juan de la Cierva 3,
28006 Madrid (Spain)

SUMMARY

The synthesis of 3,5-bis(trideuteromethyl)pyrazole was achieved by reaction of perdeuterated acetylacetone with perdeuterated hydrazine hydrate. Some unsuccessful attempts using alternative routes are also described.

Key Words: Proton-deuterium exchange; 3,5-Dimethylpyrazole-d₇.

For spectroscopic purposes, 2 H n.m.r. and n.q.r., a sample of heptadeuterated 3,5-dimethylpyrazole was required. Our previous experience (1) suggested that deuteration at position 1 (\underline{N} -D) and at position 4 (\underline{C} -D) can be simply achieved by exchange with D₂O in different conditions, at room temperature, for \underline{N} -D and at 200 $^{\circ}$ C in a sealed tube for C₄-D. Concerning the direct transformation CH₃ \longrightarrow CD₃, almost nothing was known in the literature [a six step procedure, involving oxidation by KMnO₄, to the carboxylic acid, esterification, and several reductions with LiAlD₄, has been described (2)].

The only reference we found in the Chemical Abstracts was an old paper by Erlenmeyer, Weber and Wiessmer (3) who reported the following reaction:

0362-4803/90/080967-04\$05.00 © 1990 by John Wiley & Sons, Ltd. Although compound **2** was not well characterized (only densitometry), we repeated exactly the described procedure (using also a hydrate of 1), but ¹H n.m.r. and mass spectrometry indicated that only the carboxylic proton was exchanged.

Then we tried to exchange directly the protons of 3,5-dimethylpyrazole 3 in basic medium, in the conditions in which all the protons of acetylacetone were exchanged:

The isolated product, 4, is labelled only on positions 1 and 4 (the lack of deuterium on N_1 is due to back-exchange with ambient humidity). The result is not unexpected since methyl groups on pyrazole are much less acidic than those α to a carbonyl group.

In order to increase their acidity, we thought of transforming the pyrazole into a pyrazolium cation. We selected \underline{N} -benzyl substituents, compound 5, in order to remove them after the exchange has been completed.

After 1 h reflux in D_2O containing a small amount of K_2CO_3 (6 mg/ml), the solution became very dark. A 1H n.m.r. spectrum showed that deuteration had taken place on all the protons, including those of the $N-CH_2$ (but not the phenyl protons). However, since much decomposition occurs, the purification becomes difficult and therefore the method was abandoned.

Finally, the desired compound was prepared in the following way:

After a first attempt to prepare perdeuteroacetylacetone 7 from acetylacetone 6 using the procedure described by Hayes, Sheldon and Bowie (4) (NaOD/D $_2$ O at 120 $^{\rm O}$ C in a sealed tube, formation of decomposition products only), we used the method of Doyle and Tobias (5) (K $_2$ CO $_3$ /D $_2$ O airreflux). Compound 7 was treated without purification with tetradeuterohydrazine in deuterium oxide (25%) and ethanol (75%) affording pyrazole 8 in a 98% yield.

A careful $^1{\rm H}$ and $^{13}{\rm C}$ n.m.r. and mass spectrometry study reveals that the methyl groups are enriched at $\geqslant 98\%$ but the the 4-position is only 5% labelled (probably due to the ethanol we use as solvent). For our purposes, the compound can be used as such, but a pure 3,5-dimethylpyrazole-d₇ was prepared by exchange with D₂O using the conditions already described (1).

EXPERIMENTAL

Material and methods.

Melting points were determined in open capillaries and are uncorrected. ^{1}H and ^{13}C n.m.r. spectra were recorded on a Bruker AM 200 spectrometer in CDCl $_{3}$ solutions with TMS as an internal standard. Mass spectra were determined with a modified Bruker CMS47 FT ICR mass spectrometer (6). Deuterated hydrazine hydrate was purchased from CEA (25% in D $_{2}$ O). Deuterium oxide (Scharlau), acetylacetone (Carlo-Erba) and 3,5-dimethylpyrazole (Fluka) were used. Compound 1 was prepared according to reference (2) and compound 5 according to reference (7).

3,5-Bis(trideuteromethyl)pyrazole- d_6 and $-d_7$. The compound was prepared by reaction of 2,4-pentanedione- d_8 (5) and hydrazine- d_4 deuterohydrate, as described for the synthesis of the unlabelled compound (7). M.p. $105-107^{\circ}$ C [Lit.: 107° C (7)].

970 G. Y. Iranzo and J. Elguero

144.17, C_3 and C_5 of the C_4 -D isotopomer, 144.30, C_3 and C_5 of the C_4 -H isotopomer. Mass spectrometry data: m/z 100 ($C_5H_2D_5N_2$), 101 ($C_5H_0C_1$), 102 ($C_5H_2D_6N_2$, M⁺) and 103 ($C_5H_0C_1$). After protonation (with acetone): m/z 103 ($C_5H_3D_6N_2$, MH⁺, 35%) and 104 (C_5H_2) D_7N_2 , MH⁺, 65%).

ACKNOWLEDGMENTS

One of us (G.I.Y., permanent address: INFICQ, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, CC 61, Suc. 16, 5016-Córdoba, Republica Argentina). greatly acknowledged a fellowship from the CSIC (Spain) and CONICET (Argentina). Dr. J.L. Abboud (Instituto "Rocasolano") recorded and analysed the ICR spectra; we are much indebted to him.

REFERENCES

- Elguero, J., Jacquier, R., Pellegrin, V. and Tabacik, V. Bull. Soc. Chim. Fr. 1974 (1970).
- Luitjen, W.C.M.M. and van Thuijl, J. Org. Mass Spectrom. <u>17</u>: 299 (1982).
- Erlenmeyer, H., Weber, H.M. and Wiessmer, P. Helv. Chim. Acta 21: 1017 (1938).
- 4. Hayes, R.N., Sheldon, J.C. and Bowie, J.H. Int. J. Mass Spectrom. Ion Proc. 71: 233 (1986).
- 5. Doyle, G. and Tobias, R.S. Inorg. Chem. <u>7</u>: 2479 (1968).
- Tomás, F., Abboud, J.L.M., Laynez, J., Notario, R., Santos, L., Nilsson, S.O., Catalán, J., Claramunt, R.M. and Elguero, J. J. Am. Chem. Soc. <u>111</u>: 7348 (1989).
- 7. Elguero, J., Jacquier, R. and Tizané, D. Bull. Soc. Chim. Fr. 1687 (1969).
- 8. Behr, L.C. Fusco, R. and Jarboe, C.H.- Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings (Wiley, R.H. Ed.), John Wiley and Sons, New York (1967).